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Requirements imposed by
 Passively Cooled Focal Planes

• Why passively cooled focal planes?
– No mechanical cooler required (lower weight, power & 

complexity, hence expense)

– Extended missions enabled

– Temperatures between 25 and 30K attainable

– “Faster, Better, Cheaper” space missions 

• Requirements on 10 µm HgCdTe Arrays
– Goal: < zodiacal background current (shown for assumed 

4-m telescope, diffraction limited pixels,  QE = 70%,  
telescope and camera efficiencies  81% and 58% 
respectively) 

– Competitive dark currents possible if g-r limited
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Requirements on HgCdTe Detectors

• Fundamental Dark Current Limitations
– For operating temperatures 30K, we model g-r limited dark 

currents for lifetimes of 10-6 s to 10-7 s at 10.4 µm of 

    60 to 600 e-/s for doping density ND = 1015 cm-3  and  110 to 
1100 e-/s for ND =1014 cm-3

– g-r limited RoA’s range from 108 to 9 ohm-cm2 at 30K to 2 
1010 to 11 ohm-cm2 at 25K!

– in practice, tunneling limits dark current

• Challenge

– Produce 10 µm HgCdTe detectors which exhibit improved 
dark current at ~30K - i.e. reduce ND and reduce tunneling 
contributions to dark current

– At the same time, the QE must remain sufficiently high at 
this low temperature
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Rockwell HgCdTe 
DLPH Photovotaic Detectors 

• Hg1-xCdxTe
– tunable band gap with composition x

– high QE and instrinsically rad-hard

– small lattice mismatch between HgCdTe and CdZnTe allows 
relatively high quality epitaxial heterostructures

• Double Layer Planar Heterostructure (DLPH)
– in DLPH, the LWIR material is buried beneath a MWIR material 

and is never exposed to processing chemicals

– immediately deposited MWIR effectively passivates the surface 
of the LWIR layer, eliminating the leakage where p/n junction 
intersects the LWIR/MWIR interface

– Originally, Rockwell used an LPE process:  they have now 
developed a superior MBE DLPH process which is sufficiently 
mature that there is good material control, low defect density, 
and good surface characteristics
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P/N Double Layer Planar Heterostructure--

Offers Performance and Manufacturing Advantages

• Inherently High Radiation Hardness
• Inherently Easy to Passivate
• Few Critical Steps Give Reliable Processes
• Excellent Device Performance
• Exploits MBE’s Outstanding Materials Control

Detector Cross Section:
p-Type Arsenic
Implanted Region

CdZnTe Substrate

n-MWIR MCT

Buffer Layer

Absorber Layer

SWIR Cap Layer

CdTe passivant
RIBER MBE 32-P Growth Reactor
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Molecular Beam Epitaxy HgCdTe  Growth Technology-

How it is Done

• Process Control Refined Due to 
  In-Situ  Monitoring 
• Single System Services all IR Applications
• Large Area Uniformity
• Compositional Control Allows Advanced
   Structures
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FPA DETECTOR DESIGN AND FABRICATION 
PERFORMED IN ROCKWELL HgCdTe LINE
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Test Diode Philosophy

• Extrapolate from other Rockwell Programs
– Rockwell developing DLPH arrays for low background 

applications with good 40K performance at λ > 10 µm 

– extrapolate from those programs for our lower background 
applications 

• Use of NICMOS3 Multiplexer
– Rochester test system set up for low-noise array 

measurements

– Bonded diodes (e.g. delivery #4, 18-diode wafer) to 
NICMOS mux with 1 mil wire bonds to Indium bumps on 
mux unit cell inputs

– Typically one diode connected to 3 - 5 mux pixels
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Detectors Received from Rockwell

• Delivery 2: 13.7 µm LPE, 5 measurable diodes, ND = 1 x 1015 cm-3

– test results are consistent with Rockwell’s results

– dark current at 50 mV back-bias ~107e-/sec, best R0A~2 x 107 Ω-cm2

• Delivery 3: 10.3 µm MBE, 8 measurable diodes, ND = 1.7 x 1015 cm-3

– because of the high doping density, the dark current performance is 
not as good as Delivery 2.  Also shows large diode to diode variance.

» dark current has large bias dependence, small temperature 
dependence - a signature of tunneling

• Delivery 4: 10.6 µm MBE, 17 measurable diodes;

     ND= 9.5 x 1014 cm-3.   This delivery will be discussed here.

• Delivery 5: 10 µm MBE, ND = 6.4 x 1014 cm-3; 256 x 256 array.  
Indium-bump-bonded to TCM2620 multiplexer - tests in progress 
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Test Structure for Deliveries 1-4

• Diodes are wire-bonded 
to NICMOS3 muxes
– advantages

» low noise since long 
integration times and 
multiple sampling: 
good for small signals

» fast I-V curve test 

– disadvantage
» front illumination 

» integration capacitance 
hard to estimate (multi-
nodes/detector) 

NICMOS3

wire bond
sapphire

p+ region
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Finding the NICMOS Mux Nodes Which 
Are Connected to the Diodes

• Set VDETBIAS=-500 mV

• Difference of  images in 
uncorrelated single sampling 
mode with Vbias=300 mV and 
Vbias=-200 mV were taken

•  The pixels with response (>
2500 ADUs) are the pixels 
bonded to the diodes

• Made sure all the responding 
pixels discharge when the 
reset switches were turned off.DETSUB

RESET

DETBIAS

TO OUTPUT
BUS

Vbias=VDETSUB -VDETBIAS
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I-V Curve Test

• Set Vbias= 100 mV (actual back bias is about 170 mV, i.e. the zero 
bias point is -70 mV)

• Select pixel to be measured and reset it

• Turn reset switch off and record the discharging of the output 
level as a function of time (with 16-bit A/D converter).  
Oscilloscope trace of discharge next slide.

• To deduce the I-V curve
– V=(output level-totally discharged level)/(mux gain x preamp gain)

– I=(C x [d(output level)/dt])/(mux gain  x preamp gain)

» capacitance  C is the integration capacitance, deduced by the 
Noise2  vs. Signal method
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Detector Discharge

reset

pixel discharge
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I-V Curves
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Typical I-V curve from one of the diodes (#14) from the 4th delivery, T = 30K.
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Test Results for Delivery 4:
Mux DC Gain

• turn off the reset switch

• discharge the detector 

• measure output level vs. 
VDETSUB 

• mux DC gain=0.95
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Capacitance

• C= Cj + N•<Cmux> + Cwire + Cbump 

– N - number of mux pixels connected to the diode, of which 
1 is selected

– <Cmux> -  average capacitance of a single mux node 
(Rockwell estimates 0.04 pF for a selected node; capacitance 
of de-selected nodes larger)

– Cwire - estimated to be 0.1 pF

– Cj - junction capacitance calculated from the depletion 
width, which is a function of the junction area, ε εs and ND:  
ranges from 0.045 to 0.48 pF for the diodes tested

• C measured by the Noise2  vs. Signal method yields 
higher values for <Cmux> than 0.04 pF, assuming the 
other values are either small or well-known
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Test Results for Delivery 4:
Capacitance
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– C= Cj + N•<Cmux> + Cwire + 
Cbump 

               

            Delivery #4

– C for 5  diodes determined 
by the noise2 vs. signal 
method, assuming Poisson 
Noise

» C = 1.9 pF for diode #14,    
N = 4

Squared noise vs. signal for diode #14 from Delivery 4.
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Test Results for Delivery 4:
Dark Current and RoA

• At 20 mV reverse bias, 9/14 diodes show dark 
current < 105 e-/sec (20-40K), 6/14 < 104 e-/s at 30K

• 9/14 diodes show  RoA>107 Ω-cm2, many as high as 

2 - 8 108  Ω-cm2 

     Above dark current and RoA values are computed with C 
measured by the noise2 vs. signal method

• Advanced detector architecture diodes show better 
performance

• Strong bias and weak temperature dependence: 
implies tunneling dominated dark currents.
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I-V Curves for Diode #15 as Function of T
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Band to Band (2), Trap-to-Band (1,3,4) 
and G-R (5) Dark Current Mechanisms

1

2

3
4

5

Ec

Ev

Et

Eg

p-side

n-side

From the flat Dark Current
measurements with T from 
20 - 40K, we presume that
tunneling mechanism(s) 
dominate.  1 through 4 are 
tunneling paths.
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Model: Trap-to-Band Tunneling 

–

q - electron charge                        A - junction area

Nt - trap density                            W - depletion width

m* - effective mass of holes        Eg - band gap energy

Et  -  trap energy level  (adjusted to fit data; = 0.037 eV)

M  - a matrix element associated with the trap potential 

F(a) -  defines the trap level distribution 

 E -  electric field at the junction and is  proportional to ND
0.5 

– Trap-to-band tunneling current increases rapidly with ND

– Model shows fit to data for 100 mV back bias temperature 
dependence results for #15, as well as expected 
improvement for lower ND
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Test Results for Delivery 4:
Dark Current vs. Temperature
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Test Results for Delivery 4:
Responsivity of Diode #15
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Test Results for Delivery #4:
Photocurrent Temperature Dependence
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Test Results for Delivery 4:
Relative QE vs. Temperature

• From 40 to 20 K, QE 
decreases by factor of 2 
for most diodes

• QE of advanced 
architecture diodes has 
stronger temperature 
dependence
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Discussion

• The diodes in delivery #4  show promise.  Some diodes are 
close to satisfying space requirements [e.g. diode # 15 (5B), an 
advanced architecture diode, exhibits dark current < 440 e-/s at 
30K and 20 mV back bias, and QE(30K) ~70% QE(40K)].

      We conclude from this and other observations that advanced 
architecture diodes are superior: 

» have lower dark current

» reasonable QE performance at lower temperatures

• Tunneling dominates the dark current, since dark current has 
strong bias dependence but weak temperature dependence. 

      Will try material with lower ND

• Deliveries 5 (and later) are focal plane arrays:
– allow lower bias operation to minimize dark current

– easier and more accurate capacitance measurement

– back illumination, so that absolute QE measurements possible


